Direct Prototyping of Patterned Nanoporous Carbon: A Route from Materials to On-chip Devices

نویسندگان

  • Caiwei Shen
  • Xiaohong Wang
  • Wenfeng Zhang
  • Feiyu Kang
چکیده

Prototyping of nanoporous carbon membranes with three-dimensional microscale patterns is significant for integration of such multifunctional materials into various miniaturized systems. Incorporating nano material synthesis into microelectronics technology, we present a novel approach to direct prototyping of carbon membranes with highly nanoporous structures inside. Membranes with significant thicknesses (1 ~ 40 μm) are rapidly prototyped at wafer level by combining nano templating method with readily available microfabrication techniques, which include photolithography, high-temperature annealing and etching. In particular, the high-surface-area membranes are specified as three-dimensional electrodes for micro supercapacitors and show high performance compared to reported ones. Improvements in scalability, compatibility and cost make the general strategy promising for batch fabrication of operational on-chip devices or full integration of three-dimensional nanoporous membranes with existing micro systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond PDMS: off-stoichiometry thiol-ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices.

In this article we introduce a novel polymer platform based on off-stoichiometry thiol-enes (OSTEs), aiming to bridge the gap between research prototyping and commercial production of microfluidic devices. The polymers are based on the versatile UV-curable thiol-ene chemistry but takes advantage of off-stoichiometry ratios to enable important features for a prototyping system, such as one-step ...

متن کامل

Modified Nanoporous Carbon Material for Anionic Dye Removal from Aqueous Solution

In this study, the adsorption behavior of anionic dyes from aqueous solution onto mesoporous carbon material (CMK-1) and modified with polymer (PANI/CMK-1) has been investigated as a function of parameters such as adsorbent dose (0.08-0.8 g/L), solution pH 3–10, contact time and initial concentration (10-100 mg/L). The influence of these parameters on the adsorption capacity has been studied us...

متن کامل

Ordered nanoporous carbon (CMK-3) coated fiber for solid-phase microextraction of benzene and chlorobenzenes in water samples

Nanoporous carbons (CMK-3) were prepared and have been used as a fiber coating for headspace solid phase microextraction (HS-SPME). The prepared materials were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and N2 adsorption/desorption isotherms. The efficiency of the fiber was evaluated using a gas chromatography (GC) system for the extraction of benzene (B) and c...

متن کامل

Synthesis of Ethylenediamine-modified Ordered Mesoporous Carbon as a New Nanoporous Adsorbent for Removal of Cu(II) and Pb(II) Ions from Aqueous Media

The mesoporous carbon (CMK-3) functionalized with ethylenediamine (EDA) has been synthesized (CMK-3-EDA) and applied as a new mesoporous adsorbent for removal of Cu(II) and Pb(II) cations from aqueous solutions. Nitrogen adsorption–desorption measurements (BET) show that surface area, pore size and pore volume of CMK-3 were significantly changed after amine modification. The BET surface area an...

متن کامل

Ordered Nanoporous Carbon Based Solid-Phase Microextraction for the Analysis of Nitroaromatic Compounds in Aqueous Samples

In this paper, the possibility of using a new ordered nanoporous carbon as a new fiber in headspace solid phase microextraction (HS-SPME) to determine of mononitrotoluenes (MNTs) in waste water is demonstrated. The structural order and textural properties of the ordered nanoporous carbon were studied by X Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) images and nitrogen adsorpti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013